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Abstract—Finding homologous proteins is the indispensable
first step in many protein biology studies. Thus, building highly
efficient “search engines” for protein databases is a highly desired
function in protein bioinformatics. As of August 2018, there are
more than 140,000 protein structures in PDB, and this number
is still increasing rapidly. Such a big number introduces a big
challenge for scanning the whole structure database with high
speeds and high sensitivities at the same time. Unfortunately,
classic sequence alignment tools and pairwise structure alignment
tools are either not sensitive enough to remote homologous
proteins (with low sequence identities) or not fast enough for the
task. Therefore, specifically designed computational methods are
required for quickly scanning structure databases for homologous
proteins.

Here, we propose a novel ContactLib-DNN method to quickly
scan structure databases for homologous proteins. The core idea
is to build structure fingerprints for proteins, and to perform
alignment-free comparisons with the fingerprints. Specifically,
the fingerprints are low-dimensional vectors representing the
contact groups within the proteins. Notably, the Cartesian dis-
tance between two fingerprint vectors well matches the RMSD
between the two corresponding contact groups. This is done by
using RMSD as the domain knowledge to supervise the deep
neural network learning. When comparing to existing methods,
ContactLib-DNN achieves the highest average AUROC of 0.959.
Moreover, the best candidate found by ContactLib-DNN has a
probability of 70.0% to be a true positive. This is a significant
improvement over 56.2%, the best result produced by existing
methods.

GitHub: https://github.com/Chenyao2333/contactlib/
Index Terms—homologous proteins, protein structures, remote

protein homolog detection, alignment-free comparisons

I. INTRODUCTION

Homologous proteins are the ones sharing a common ances-
tor. They carry critical information to understand protein func-
tions and evolutions [1]. Thus, finding homologous proteins is
usually the first and the indispensable step in many protein
biological studies. Specifically, homologous proteins tend to
share a common structure carrying a conserved function. By
studying the correlation between the common structure and the
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conserved function, one could understand how these homolo-
gous proteins perform the conserved function. Understanding
how proteins function is a critical step towards designing
proteins with specific functions. This is the ultimate goal of
current protein research.

As the number of known protein structures increases rapidly
(i.e., more than 10,000 structures are deposited annually into
PDB since 2016 [2]), the computational cost to perform a
structure-based database scan for homologous proteins in-
creases rapidly. One possible alternative solution is to apply
the classic sequence alignment methods, such as BLAST [3].
Although such methods are highly efficient, their accuracies
drop significantly for remote homologous proteins with low
sequence identities [4], [5]. In such cases, structure similarities
become the most reliable evidences for finding homologous
proteins. This is mainly because structures are more conserved
than sequences during the course of evolution. Therefore, it is
highly desired to have an efficient and effective structure-based
“search engine” for homologous proteins.

One intuitive way to find remote homologous proteins is
to perform pairwise structure alignments between the query
protein and all proteins in the database. In the past two
decades, many successful methods have been developed for
the pairwise structure alignment problem [6]–[14]. The main
challenge here is to find the optimal superposition and the
optimal residue matching simultaneously. Actually, this prob-
lem is known to be NP-hard [15], [16], and time-consuming
heuristic algorithms are applied to find local optimal solutions.
As a result, performing a database scan could take hours to
days on a single computer [4], [5]. However, a “search engine”
should return results in seconds, and thus existing pairwise
structure alignment methods are not suitable for structure
database scans.

In order to satisfy the speed requirement for quickly scan-
ning structure databases, several successful methods have
been proposed [17]–[19]. For example, FragBag [20] adopts
the classic bag-of-word approach for the literature search
problem, and treats protein structures as literatures with a bag
of structure fragments. ContactLib [21] abstracts all contact
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groups within the protein structure, and represents them as
low-dimensional fingerprint vectors for highly efficient index-
ing. SmotifCOMP [22] employs structure motifs at secondary
structure element boundaries to significantly reduce the di-
mensionality of structure representations. Due to the trade-
off between speeds and accuracies, all these pioneer attempts
achieve high speeds with noticeable losses on accuracies.
Therefore, there is still room for accuracy improvements, and
achieving higher accuracies with high speeds is the main
challenge to scan a database for remote homologous proteins.

Deep neural networks (DNNs) have outperformed state-
of-the-art methods in different research areas [23], including
protein computational biology [24]. For examples, DNNs have
been successfully used for solvent accessibility and secondary
structure predictions [25], [26], contact map predictions [27],
[28] and fold recognitions [29], [30]. One thing in common
among these DNNs is that they all employ supervised learning,
and thus training such DNNs usually requires a sufficiently
large amount of labeled data. Recently, it has been shown that
label-free supervision is possible, and domain knowledge is
sufficient to train DNNs [31]. Specifically, DNNs have been
successfully trained to track free falling objects in videos
without any labeled data. The only training supervision used
here is the physical law of free falling objects. Although
such label-free supervision greatly eases the labeled data
requirements of training DNNs, it has not yet been applied
in protein computational biology.

In this manuscript, we propose a new method, called
ContactLib-DNN, to perform fast database scans for remote
homologous proteins in the following steps: first, contact
groups are abstracted from the query protein structure; second,
a DNN is employed to convert contact groups into low-
dimensional vectors as fingerprints (see Fig. 1 for an illus-
tration of the first two steps); third, these fingerprints are used
to scan the database for similar contact groups (with pre-
computed fingerprints) using a highly efficient indexing algo-
rithm; fourth, using these similar contact groups, an alignment-
free similarity score is computed between the query protein
and each protein in the database; and finally, the proteins in
the database are ranked according to the similarity scores.

Our new ContactLib-DNN method improves the original
ContactLib [21] method in two aspects: (1) the revised def-
inition of contact groups better eliminates noisy (i.e., use-
less) and redundant contact information; and (2) the DNN
converts contact groups into fingerprint vectors such that
the Cartesian distance between two fingerprint vectors well
matches the RMSD between the two corresponding contact
group structures, as shown in Fig. 2. Here, RMSD serves
as the domain knowledge to supervise our training process.
As a result, fingerprint vectors with lower dimensionalities
are conducted for higher speeds, and more precise indexing
results are achieved for higher accuracies. To the best of
our knowledge, ContactLib-DNN is the first DNN trained
under label-free supervision of domain knowledge in protein
computational biology.

The performance of our ContactLib-DNN is compared to

Fig. 1: Conducting vector representations of contact groups:
the 3-dimensional structure (left) of a contact group (red) is
first converted to a residue-residue distance matrix (middle);
the distance matrix is then converted to a low-dimensional
vector (right) by a deep encoder (arrow, see Fig. 2); and the
vector is finally used as a fingerprint to represent the contact
group.

state-of-the-art methods, FragBag [20] and ContactLib [21]. It
has been observed that the AUROC distribution of ContactLib-
DNN is much closer to the maximum value of one with
the highest average AUROC of 0.959. When focusing on
the top ten candidates found by ContactLib-DNN, ContactLib
and FragBag, the precisions are 0.427, 0.316 and 0.019,
respectively. Therefore, all results support that ContactLib-
DNN is the most accurate method.

II. METHOD

A. Contact Group Definition

It has been reported that one contact for every twelve
residues allows accurate protein structure modeling [32]. Thus,
residue-residue contacts are capable of determining protein
structures, and we introduce contact groups to capture the
critical contacts and their environments for finding structurally
similar proteins.

A contact group is defined as a pair of contacting fragments
with the same length of l (i.e., the number of residues of
the fragment). Fig. 1 shows one contact group with l = 4
on the left. Here, each residue is represented by its Cα
atom, and l can be used to control how much sequential
environment to be included. The Cα-Cα distance threshold
of dc is used to approximately determine if two residues are
in contact. Moreover, a contact group should contain at least
nc contacts between the two fragments to effectively exclude
noises introduced by our contact approximation. Finally, the
maximum pairwise Cα-Cα distance of dg is introduced to
control how much spacial environment to be included.

Interestingly, we observed that different contact groups may
differ in capability on modelling structures. Thus, a filtering
step is performed based on the secondary structures for higher
accuracies and higher speeds.

B. RMSD-Supervised Deep Encoder

The motivation to use a deep encoder lies in the redundant
representation of contact groups and the RMSD restraint.
Specifically, taking i as the sequence number defined in
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Fig. 2: The architecture of the deep encoder: a dense layer
block (left) is built to learn the hidden features; an encoder
(middle) is built to generate the fingerprint vectors representing
the contact groups; the number of neurons of the pre-activation
output dense layer equals to the dimension of the fingerprint
vector; the bound activation layer trim the outputs into range
[−8Å, 8Å]; and the objective of the training process (right) is
finding a fingerprint vector space such that the mean square
error (MSE) between two fingerprint vectors equals to the
RMSD between the two corresponding contact groups.

the PDB format, the average distance between two α-helix
residues i and (i + 4) is 6.22Å with a standard deviation
of 0.34Å. Such a low standard deviation implies a high
redundancy. As illustrated in Fig. 1, the distance matrix
of a contact group is encoded into a fingerprint vector to
eliminate such redundancies. Moreover, traditional methods
are not designed to learn fingerprint vectors under the RMSD
restraint. For examples, PCA [33] can only conduct a linear
compression; t-SNE [34] is merely able to yield two or
three dimensional vectors; word2vec [35] is more suitable for
extracting between 500 and 1,000 dimensional information.
Therefore, the specifically designed deep encoder in Fig. 2 is
introduced to produce compact fingerprint vectors under the
RMSD restraint.

The deep encoder is shown in the middle of Fig. 2, and
it is used to produce fingerprint vectors for contact groups.
Since we do not have labels for such fingerprint vectors,
a supervised learning is not possible. Thus, we introduce
the Y-shaped RMSD-supervised learning model to train the
encoder, as shown on the right of Fig. 2. Specifically, the
two encoders in the Y-shaped model share the parameters,
and hence only one encoder is trained. The learning objective
is the RMSD restraint such that the MSE between a pair of
fingerprint vectors should equal the RMSD between the two
corresponding contact groups. Therefore, RMSD serves as the
domain knowledge to supervise the label-free learning process.

C. Searching the Library of Contact Groups

Before introducing the searching algorithm, we first describe
the evaluation of the similarity between two fingerprint vec-
tors. For two fingerprint vectors Vq and Vt from the query
protein and a target protein, the distance between Vq and Vt is
determined by the l∞-norm. Then, Vq and Vt are considered

to be similar by the following constraint:

‖Vq − Vt‖∞ ≤ d∞,

where d∞ is a user-defined threshold. Then, an indexing
algorithm can be used to quickly retrieve all similar contact
groups in the target database (see [21]). In order to use the
indexing algorithm, real values are discretized into multiple
bins. For example, one bin could represent 0.1Å, and hence
d∞ = 1.2Å is equivalent to 12 bins.

To retrieve homologous proteins given a query protein,
all contact groups of the query protein are first abstracted
and transformed to fingerprint vectors. Then, the indexing
algorithm with the l∞-norm distance function and an user-
specified d∞ threshold is used to find all pairs of similar
contact groups between the query protein and any target
protein in the target database. The number of similar pairs
(i.e., hits) between the query protein and a target protein can
be simply counted to calculate the similarity score defined as
follows:

S =

√
hqht
nqnt

,

where hq and ht are the number of hits on the query pro-
tein and the target protein, respectively; and nq and nt are
the number of contact groups of the query protein and the
target protein, respectively. Thus, higher scores imply higher
similarities, and all target proteins in the target database are
ranked according to the similarity score for output.

III. RESULTS

A. CULLPDB25 Dataset

In order to evaluate the performance of our method, a
dataset of non-redundant and high-quality protein structures
is prepared with the help of the widely used PISCES server
[36]. Specifically, the sequence identity is less than 25%, the
resolution is less than 2.0Å and the R-factor is less than
0.25. This protein list was downloaded on Jan. 15, 2018, and
then only proteins with more than 50 residues and less than
1,000 residues were kept. As a result, 8,437 proteins were
collected, and this dataset will be referred as CULLPDB25 in
this manuscript.

B. Model Settings

In our definition of contact groups (described in Section
II-A), there are four hyperparameters, and the actual values
used in our experiments are as follows: the minimal number
of contacts nc = 2, the fragment length l = 4, the maximum
contact distance dc = 8.0Å, and the maximum group distance
dg = 16.0Å. Our results also suggest to use RMSD cutoffs
between 0.6Å and 1.4Å. Finally, contacts groups containing
only α-helix and coil fragments are filtered out for higher
speeds and higher accuracies. For the sake of saving space,
the details of yielding above model settings are eliminated.
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TABLE I: Accuracies to Find Similar Contact Groups

RMSD Cutoff 0.6 0.8 1.0 1.2 1.4

Precision PCA 0.839 0.860 0.712 0.695 0.617
DNN 0.943 0.985 0.978 0.950 0.973

Recall PCA 0.584 0.688 0.646 0.596 0.503
DNN 0.371 0.536 0.540 0.500 0.451

C. Encoding Fingerprint Vectors

Recall that the objective of our DNN training process is
finding a fingerprint vector space such that the MSE between
two fingerprint vectors equals to the RMSD between the
two corresponding contact groups. In this section, we first
demonstrate that the DNN outperforms the classic PCA [33]
in terms of our objective. Then, we demonstrate the positive
impacts of our training objective on finding similar contact
groups.

In this experiment, 100 million contact group pairs were
randomly selected from CULLPDB25 as our training dataset,
and 100 thousand contact group pairs were randomly selected
as our testing dataset. We used the training dataset to train
a deep encoder with 7 output neurons (described in Section
II-B), and the training process was stopped after 100 epochs.
Here, neither the optimal number of output neurons nor the
optimal training process was the focus of this study. Thus,
this setting was used for all the following experiments. The
following analysis was conducted with the testing dataset and
the DNN model after 100 epochs.

The heatmaps in Fig. 3 show the relationships between the
MSE and the RMSD using fingerprint vectors encoded by
DNN and PCA. It can be observed that the MSE of DNN
encoded vectors is tightly close to the RMSD, whereas this
is not the case for PCA encoded vectors. If we use the l∞
norm (also used by our indexing algorithm as described in
Section II-C) as the distance metric between fingerprint vectors
to predict similar contact groups, the prediction accuracies
are shown in Table I. It can be observed that PCA tends to
have more balanced values between precisions and recalls.
On the other hand, DNN is capable of delivering near-
optimal precisions (e.g, 0.985) while discovering majority of
similar contact groups (i.e., recall > 0.5). This is a desired
phenomenon caused by our DNN training objective, and this
phenomenon leads to a better overall performance in the next
section.

D. Overall Performance Evaluations

In this experiment, the overall performance of our new
ContactLib-DNN to scan structure databases for homologous
proteins is evaluated. Then, the results are compared to Frag-
Bag [20], ContactLib [21] and ContactLib-PCA, a variant of
ContactLib-DNN using a PCA in place of the DNN. Since nei-
ther the source code nor the Smotif library is publicly available
for SmotifCOMP [22], it is not available for comparisons in
this experiment.

For each protein in CULLPDB25, we used it as the query
protein and the rest of CULLPDB25 as the target database
(i.e., leave-one-out cross validation). Then, ContactLib-DNN

(a) DNN, RMSD < 6.0Å (b) DNN, RMSD < 2.0Å

(c) PCA, RMSD < 6.0Å (d) PCA, RMSD < 2.0Å

Fig. 3: Comparisons of the fingerprint vectors conducted by
DNN and PCA: recall that for high-quality fingerprint vectors,
the MSE between two fingerprint vectors should well match
the RMSD between the two corresponding contact groups;
in general cases, the heatmap of DNN (a) shows a narrower
distribution along the diagonal comparing to that of PCA
(c); especially, when focusing on the similar contact groups
with RMSD < 1.5, the heatmap of DNN (b) shows a solid
relationship between MSEs and RMSDs, while this is not
the case for PCA (d); and comparing to PCA, the fingerprint
vectors conducted by DNN have an outstanding capability to
distinguish similar contact groups from dissimilar ones.

was used to scan the target database for homologous proteins.
Specifically, for each protein, the contact groups were ab-
stracted based on our hyperparameters. For each contact group,
a 7-dimensional fingerprint vector was generated using our
deep encoder (see Section III-C). Then, we used the contact
groups of the query protein and the contact groups in the target
database to find homologous proteins (see Section II-C). Here,
two proteins are presumed to be homologous if their TM-
score is greater than 0.5. Recall that there are 8,437 proteins
in CULLPDB25. Interestingly, there are 1,176 proteins without
any homolog. Since AUROCs are not defined for such cases,
we used the remaining 7,261 proteins in the following analysis.

AUROC [37] is capable of describing the sorting capability
of a search tool. If a positive and a negative sample are
randomly selected, AUROC evaluates the probability that the
positive sample ranks prior to the negative one. Fig. 4a shows
the average AUROC among the 7,261 protein structures. It
can be seen that ContactLib-DNN’s average AUROC achieves
0.959, which is improved by 1.9%, 4.5% and 27.9% compared
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(a) Impacts on the number of bins

(b) Comparisons with the optimal number of bins

Fig. 4: Evaluations of scanning structure databases for homol-
ogous proteins: every protein in the CULLPDB25 dataset is
used to find homologous proteins from the rest of the dataset;
an AUROC is calculated for each database scan; the number of
bins is an user-specified threshold equivalent to the l∞-norm
distance threshold d∞ (see Section II-C); (a) the relationships
between the average AUROC and the user specified number of
bins are plotted; (b) the AUROC distributions with the optimal
number of bins are shown in the box-and-whisker plot (the
whisker height is twice of the box height); and comparing to
other tested methods, ContactLib-DNN achieves the highest
average AUROC of 0.959 with AUROC distributions much
closer to the perfect value of one.

to ContactLib-PCA, ContactLib and FragBag, respectively.
Furthermore, from the AUROC distributions in Fig. 4b, 75%
of ContactLib-DNN’s AUROC results exceed 0.945, whereas
only around 49% of ContactLib’s AUROCs reach the same
value. Therefore, ContactLib-DNN has evident advantages on
AUROCs, which is sufficient to verify the sorting effectiveness
of a search tool.

The precision of top predictions is another index to evaluate
the effectiveness of search engines. Specifically, the principle

TABLE II: Evaluations of Top Predictions

(a) Average precisions

Method Top 1 Top 10 Top 20 Top 40
FragBag 0.035 0.019 0.017 0.017

ContactLib 0.562 0.316 0.247 0.184
ContactLib-PCA 0.583 0.340 0.269 0.203
ContactLib-DNN 0.700 0.427 0.340 0.257

(b) Probability of precision > 0.0

Method Top 10 Top 20 Top 40
FragBag 0.172 0.251 0.351

ContactLib 0.758 0.804 0.852
ContactLib-PCA 0.767 0.817 0.865
ContactLib-DNN 0.850 0.883 0.913

(c) Probability of precision > 0.5

Method Top 10 Top 20 Top 40
FragBag 1.4e-4 0 0

ContactLib 0.266 0.182 0.102
ContactLib-PCA 0.294 0.208 0.126
ContactLib-DNN 0.394 0.291 0.198

for a search engine is listing as many true positive results as
possible on the top of the list, which can be evaluated by
the precision of top predictions. Table IIa shows the precision
of top 1, 10, 20, and 40 predictions. Please note that the
average number of positives is approximately 34. Comparing
to ContactLib-PCA, ContactLib-DNN promotes the average
precision significantly by 25.6%. In addition, we calculate
the probability of precision > 0.0 and precision > 0.5. The
probability of precision > 0.0 indicates the likelihood that
at least one true positive result emerge in top predictions.
According to Table IIb, the probability of having at least
one true positive in top 10 predictions by ContactLib-DNN
reaches 0.85, whereas the other methods reaches at most 0.77.
The probability of precision > 0.5 indicates the likelihood
that the majority of the top predictions are true positives, and
ContactLib-DNN outperforms the others significantly as well.

Although AUPRC is widely used to evaluate prediction
models, it is not suitable in the context of search engines. This
is mainly because, for a search engine, its users usually focus
on the precision of top predictions rather than the overall accu-
racies. Nevertheless, the AUPRC for ContactLib-DNN reaches
0.433, which is 35.3% and 50.9% higher than ContactLib-
PCA and ContactLib, respectively. Thus, the observations of
AUPRC are consistent with those of AUROC.

IV. CONCLUSIONS

In this manuscript, we propose a novel method, ContactLib-
DNN, to rapidly scan structure databases for homologous pro-
teins. The superiority of ContactLib-DNN is reflected in both
efficiency and effectiveness. With respect to the efficiency, the
contact redundancy elimination, the DNN dimension reduction
and the bitwise indexing significantly reduces the search time.
As a result, the average CPU time to scan the CULLPDB25
dataset for a query structure is merely 1.7 seconds using
a single core of an Intel(R) Core(TM) i7-8700K 3.70GHz
processor. Moreover, our program requires less than 2GB
memory.
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The improvement of ContactLib-DNN’s effectiveness re-
sults from two core ideas. First, filtering out the three most
redundant contact group classes evidently improves the AU-
ROC and the AUPRC while reduces the runtime complexity.
Second, ContactLib-DNN compresses contact groups into fin-
gerprint vectors, whose Cartesian distances well matches the
RMSDs between corresponding contact groups. This key train-
ing constraint achieves a near-perfect precision of 0.985 while
discovering the majority of similar contact groups, as shown in
Table I. These two core ideas lead an improvement of AUROC
to 0.959 in the overall experiment. In summary, ContactLib-
DNN is the most accurate method among ContactLib-DNN,
ContactLib-PCA, ContactLib [21] and FragBag [20].
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